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Abstract

Contextuality is often associated with nonseparability and holism in
quantum mechanics. Here we show that some N -particle quantum sys-
tems have a set of non-contextual observables that are holistic, such that
the system is deterministic, whereas all its parts are random. The total
correlation is not sufficient to determine the probability distribution, pre-
senting a need for extra measurements. We propose a formal definition
of holism not based on contextuality.
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Introduction

Bounded contextuality is perhaps the most important defining characteristic
of quantum mechanics [5, 30]. Indeed most of the puzzling aspects of quantum
mechanics are related to its contextual character. This is the case for the double
slit experiment [6], and for the entanglement of two or more states, as the
Einstein-Podolsky-Rosen (EPR) paradox [19, 21] or the Greenberger-Horne-
Zeilinger (GHZ) theorem [25, 7]. We call it bounded contextuality because
some of those systems exhibit less contextuality than general non-signaling
systems [34], as they satisfy what is called the Tsirelson bound [13]. Another
case is that of state independent contextuality, as the famous Kochen-Specker
theorem [27].

Contextuality is indicated by the lack of a joint probability distribution for
a system of observables (see [4, 3, 16, 15] and references therein). Intuitively,
we think that observables are contextual when they depend on the context, i.e.
on how they are measured and with which other variables they are measure
together. Formally, we can express this in terms of random variables. Let E =
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{X1, . . . , XN} be a set of possible observable quantities (we will think of such
quantities as quantum observables later on). We assume, for simplicity, that
the observables Xi are yes-no questions. Let a context Ci be an experimental
condition where some of those quantities are observed simultaneously (but not
necessarily all of them). For example, C1 can be the context where X1 and X2

are observed simultaneously, C2 the context where X2 and X3 are observed,
and so on.

Let us model the outcomes of E with random variables. Let {X1, . . . ,XN}
be a set of N ±1-valued random variables defined on a probability space
(Ω,F , p). It is not always possible to model the experimental outcomes of
E with this set of random variables for two possible reasons. First, the ex-
pectations of Xi change with context, which happens when its measurement
outcomes can be thought of as being directly affected by the experimental con-
dition. When this happens, we say the system exhibits explicit contextuality,
as it is unequivocal in this case that the outcomes of experiments change with
context. A more subtle example is when the expectations themselves do not
change from context to context, but are inconsistent between different contexts.
An example is the well-known Kochen-Specker set of observables, but Suppes-
Zanotti [40] provided a simpler example, directly related to Specker’s parable
of the seer [39]. Let {X,Y,Z} be a set of ±1-valued random variables with zero
expectations and perfect anti-correlations E (XY) = E (XZ) = E (YZ) = −1.
Though the expectations of X, Y, and Z are the same thought the different
contexts, by construction, it is not possible for them to have the same values
in different contexts. To see this, imagine X = 1 in the context of (X,Y).
From the first correlation, this implies that Y = −1, which from the third
correlation yields Z = 1, which contradicts with the third correlation, which
requires the product XZ to be −1. This logical contradiction arising from the
expectations does not allow for a joint probability distribution [1]. Systems
like Suppes-Zanotti are said to exhibit hidden contextuality1.

In addition to contextuality, EPR and GHZ show a striking characteris-
tic of quantum mechanics: non-locality, or the context dependency of systems
situated far apart from each other. In quantum mechanics, systems that in-
teracted with each other in the past may become entangled, and, even if they
are separated by a great distance later on, their properties can be correlated in
a way that would evade any attempt to give a classical explanation [8]. This
non-local contextuality has as a consequence the nonexistence of a joint prob-
ability distribution, and hence of a local hidden-variable theory, that explains
the outcome of the experiments [40]. More recently, Mermin [29] showed that

1Dzhafarov, Kujala, and collaborators reserve the word contextuality only for what we
call here hidden contextuality, and they refer to systems exhibiting explicit contextuality as
inconsistently connected [17].
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if we allow states with a large number N of particles to be superposed in a way
similar to the superposition of particles in the GHZ theorem, then quantum
mechanics deviates exponentially with N from the classical case (i.e., one that
could be understood by a local hidden-variable).

Kochen-Specker [27], on the other hand, does not require separability. It
comes not from observational properties of a state, but from the algebra of
observables themselves. Because quantum logic is not Boolean, but forms an
orthomodular lattice, Kochen and Specker showed that for a set of observables,
all commuting for each experimental context, its is impossible to consistently
assign truth values to outcomes of all measurements, if we assume that those
truth values are not context-dependent.

The non-local contextuality, i.e. nonseparability, of variables that can ac-
count for all the experimental outcomes suggests that quantum mechanics has
some holistic characteristic. Holism is the idea that the whole cannot be con-
sidered as the sum of its individual parts. The fact that systems far apart are
contextual and nonseparable has led some authors to suggest that quantum
mechanics has in its core a holistic characteristic [23, 35]. Nonseparability, in
the sense used in EPR or GHZ, means that a local hidden-variable theory that
predicts the outcome of the experiments is impossible. Of course, nonsepara-
bility implies holism, but that the converse is not true is what we show in this
article.

To do this, we will first show that a GHZ N -particle quantum mechanical
system behaves in a deterministic way, when considered as a whole, but that
every proper subsystem behaves in a completely random way. This is done
by first showing that any subsystem has maximal entropy, whereas the whole
system has entropy zero. Then, we analyze, from a probabilistic point of view,
the N -particle GHZ example. We show that quantum mechanics is more re-
strictive on the subsystems than pure probability considerations, even though,
for the particular observables in question, a joint probability distribution ex-
ists. Then, we propose a definition of holism that is distinct from the concept
of separability (i.e., it is not contextual), and discuss this definition by means
of simple examples. Our definition of holism is satisfied by the GHZ quantum
mechanical system presented earlier.

1 Quantum Mechanical Holism

Before we analyze the more complicated N -particle case, let us start with an
example of a three-particle quantum-entanglement know as the GHZ state [25].
The GHZ state is described by the vector

|ψ〉 =
1√
2

(|+ ++〉 − | − −−〉) , (1)
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where |+ ++〉 ≡ |+〉1z ⊗ |+〉2z ⊗ |+〉3z is the state where all three particles are
prepared as an eigenstate of value +1 of the z-spin operator (for simplicity, we
are using a system of units where ~ = 1; details about spin operator algebra
can be found in standard quantum mechanics textbooks, as for example Cohen-
Tanoudji et al. [14] or Sakurai [37]).

From the algebra of spin operators, we have

σ̂zi|+〉zi = |+〉zi, σ̂zi|−〉zi = −|−〉zi, (2)

σ̂xi|+〉zi = |−〉zi, σ̂xi|−〉zi = |+〉zi, (3)

σ̂yi|+〉zi = −i|−〉zi, σ̂yi|−〉zi = i|+〉zi, (4)

where σ̂wj , w = x, y, z and j = 1, 2, 3, represents the w-direction spin observ-
able for particle j.

The state described by (1) has many important properties, stated in the
following proposition.

Proposition 1.1 The state vector (1) is an eigenvector of σ̂x1 ⊗ σ̂y2 ⊗ σ̂y3,
σ̂y1 ⊗ σ̂x2 ⊗ σ̂y3, σ̂y1 ⊗ σ̂y2 ⊗ σ̂x3, and σ̂x1 ⊗ σ̂x2 ⊗ σ̂x3, and and its eigenvalues
are, respectively, 1, 1, 1, and −1.

Proof. We start with σ̂x1 ⊗ σ̂y2 ⊗ σ̂y3. In order to compute the σ̂x1 ⊗ σ̂y2 ⊗
σ̂y3|ψ〉 we first compute σ̂x1 ⊗ σ̂y2 ⊗ σ̂y3| + ++〉 and σ̂x1 ⊗ σ̂y2 ⊗ σ̂y3| − −−〉
using (3) and (4).

σ̂x1 ⊗ σ̂y2 ⊗ σ̂y3|+ ++〉 = σ̂x1|+〉z1 ⊗ σ̂y2|+〉z2 ⊗ σ̂y3|+〉z3
= |−〉z1 ⊗ (−i) |−〉z2 ⊗ (−i) |−〉z3
= −|−〉z1 ⊗ |−〉z2 ⊗ |−〉z3
= −| − −−〉,

σ̂x1 ⊗ σ̂y2 ⊗ σ̂y3| − −−〉 = σ̂x1|−〉z1 ⊗ σ̂y2|−〉z2 ⊗ σ̂y3|−〉z3
= −|+〉z1 ⊗ i|+〉z2 ⊗ i|+〉z3
= |+〉z1 ⊗ |+〉z2 ⊗ |+〉z3
= |+ ++〉.

Therefore

σ̂x1 ⊗ σ̂y2 ⊗ σ̂y3|ψ〉 =
1√
2

(σ̂x1 ⊗ σ̂y2 ⊗ σ̂y3|+ ++〉 − σ̂x1 ⊗ σ̂y2 ⊗ σ̂y3| − −−〉)

=
1√
2

(−| − −−〉+ |+ ++〉)

= |ψ〉.
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as we wished to prove. The proofs for σ̂y1 ⊗ σ̂x2 ⊗ σ̂y3, σ̂y1 ⊗ σ̂y2 ⊗ σ̂x3, and
σ̂x1 ⊗ σ̂x2 ⊗ σ̂x3 are similar and will be omitted. �

We are now in a position to state GHZ’s main result.

Proposition 1.2 (GHZ) Let |ψ〉 be the quantum mechanical state shown in
(1) and let Xi (Yi) be ±1 random variables representing the values of the
spin in the x-direction (y-direction) for particle i. Then, there exists no joint
probability distribution for Xi and Yi that reproduces the quantum mechanical
predictions given in Proposition 1.

Proof. We prove it by showing that the existence of a joint probability
distribution leads to a contradiction. From Proposition 1

1 = E(X1Y2Y3) (5)

= E(Y1X2Y3) (6)

= E(Y1Y2X3), (7)

and
E(X1X2X3) = −1.

If we assume that a joint probability distribution exists, then

E((X1Y2Y3) (Y1X2Y3) (Y1Y2X3))

exists. From (5)–(7) we have that

E((X1Y2Y3) (Y1X2Y3) (Y1Y2X3)) = E ((1) (1) (1))

= 1. (8)

But from the existence of a joint and from the property that a ±1 random
variable square is always equal to 1 we have that

E((X1Y2Y3) (Y1X2Y3) (Y1Y2X3)) = E(X1X2X3Y
2
1Y

2
2Y

2
3)

= E(X1X2X3)

= −1,

in clear contradiction to (8), as we wished to prove. �

The GHZ state has the additional interesting characteristic that combi-
nations of spin measured in different particles behave deterministically. To
explain what we mean, let X1 be a ±1-valued random variable representing
a measurement of spin in the x-direction for particle 1, and let Y2 and Y3
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be ±1-valued random variables representing measurements of spin in the y-
direction for particle 2 and 3, respectively. If we compute the expectations of
these random variables we obtain at once

E (X1) = 〈ψ|σ̂x1|ψ〉
= 0,

E (Y2) = 0,

and
E (Y3) = 0.

It is also easy to show that the expectations E (X1Y2) = E (X1Y3) = E (Y2Y3)
are zero. However, the product of all three variables, X1Y2Y3 is always 1, a
deterministic result. We thus conclude that for the three-particle GHZ state,
we can define random variables such that their product behaves determinis-
tically, whereas if we remove only one of them, the product of the remaining
variables behave randomly.

It is interesting to note that, even though the results above are derived from
quantum mechanical considerations, they could be explained classically, i.e., in
terms of local hidden variables. The reason is that for the set of observable ex-
pectations given are not contextual, in the sense that there is a joint probability
distribution. As we know, the existence of a joint probability distribution is
a necessary and sufficient condition for the existence of a hidden variable that
factors out the observed correlations [40, 21]. Within the GHZ setup, to obtain
contextuality one needs to include further experimental conditions (contexts)
that yield contradictions.

The consideration above motivates us to extend the three-particle GHZ
state to N particles. Let |ψ〉 be the entangled GHZ-like N -particle state given
by

|ψ〉 =
1√
2

[
N∏
k=1

|+〉k +
N∏
k=1

|−〉k

]
, (9)

where σ̂iz|+〉i = |+〉i, σ̂iz|−〉i = −|−〉i, with σ̂iz being the spin operator in
the z direction acting on the i-th particle, i = 1, . . . , N . We start with the
following Proposition.

Proposition 1.3 Given the ket

|ψ〉 =
1√
2

(|+ + · · ·+〉+ | − − · · · −〉), (10)

and the operator Σ̂ = σ̂1x⊗ σ̂2x⊗ · · · ⊗ σ̂Nx, where σ̂ix (i = 1 . . . N) is the spin
operator corresponding to the observable for spin of the i-th particle in the x
direction, then |ψ〉 is an eigenstate of Σ̂ with eigenvalue 1.
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Proof. First, we recall that σ̂ix|+〉i = |−〉i and σ̂ix|−〉i = |+〉i. We can write
Σ̂ in a compact way as

Σ̂ =
N∏
k=1

σ̂k,x. (11)

Therefore

Σ̂|ψ〉 =
1√
2

N∏
k=1

σ̂k,x

(
N∏
k=1

|+〉k +
N∏
k=1

|−〉k

)

=
1√
2

N−1∏
k=1

σ̂k,x

(
N−1∏
k=1

|+〉k ⊗ |−〉N +

N−1∏
k=1

|−〉k ⊗ |+〉N

)

=
1√
2

N−n∏
k=1

σ̂k,x

(
N−n∏
k=1

|+〉k ⊗
N∏

l=N−n+1

|−〉l +
N−n∏
k=1

|−〉k ⊗
N∏

l=N−n+1

|+〉l

)

=
1√
2

(
N∏
l=1

|−〉l +
N∏
l=1

|+〉l

)
= |ψ〉,

as we wished to prove. �

In other words, the observable Σ̂, made out of the product of all N spin
observables, is deterministic, as a measurement of it always results in the value
1. In a similar way, this determinism is also true for the observables∏

i

σ̂iy ⊗
∏
j

σ̂jx, (12)

where the index i is any subset with even cardinality of 2{1,2,...,N}, and j is the
complement of i.

The state (9) has been the focus of several interesting papers, all of them
related to the deterministic aspects of the above observables [25, 29, 10, 28, 9,
7, 41, 31]. However, in this paper we will be interested in observables acting
only on a subset of the set of all particles in (9). We start with the following.

Proposition 1.4 Given the ket

|ψ〉 =
1√
2

(|+ + · · ·+〉+ | − − · · · −〉), (13)

and the spin operators σ̂id, where i = 1 . . . N and d = x, y, then any product of
n < N distinct spin operators has expectation zero for this ket. Furthermore,
if we include spin operators in the z direction, any product involving an odd
number of σ̂iz’s also has expectation zero.
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Proof. Let us call A the set {1, 2, 3, . . . , N}, and let X,Y , Z, and W be
disjoint sets such that X ∪ Y ∪ Z ∪ W = A. Then, any product of spin
operators can be written as

Σ̂A =
∏
k∈X

σ̂k,x ⊗
∏
l∈Y

σ̂k,y ⊗
∏
m∈Z

σ̂k,z ⊗
∏
n∈W

1̂k.

We want to compute 〈ψ|Σ̂A|ψ〉, the expected value of this operator.

Σ̂A|ψ〉 =
1√
2

∏
k∈X

σ̂k,x ⊗
∏
l∈Y

σ̂k,y ⊗
∏
m∈Z

σ̂k,z ⊗
∏
n∈W

1̂k

(
N∏
k=1

|+〉k +
N∏
k=1

|−〉k

)

=
1√
2

∏
k∈X

σ̂k,x ⊗
∏
l∈Y

σ̂k,y ⊗
∏
m∈Z

σ̂k,z

⊗
∏
n∈W

1̂k

 ∏
k∈X,Y,Z,W

|+〉k +
∏

k∈X,Y,Z,W

|−〉k


=

(−i)C(Y )
∏

k∈X,Y

|−〉k
∏

l∈Z,W
|+〉l

+ (−1)C(Z) iC(Y )
∏

k∈X,Y

|+〉k
∏

l∈Z,W
|−〉l

 ,
where we used σ̂ky|+〉k = −i|−〉k and σ̂ik|−〉k = i|+〉k, and C(Y ) (C(Z)) is
the number of elements of Y (Z). We then have

〈ψ|Σ̂A|ψ〉 =
1

2

[
N∏
k=1

〈+|k +
N∏
k=1

〈−|k

]
×(−i)C(Y )

∏
k∈X,Y

|−〉k
∏

l∈Z,W
|+〉l

+ (−1)C(Z) iC(Y )
∏

k∈X,Y

|+〉k
∏

l∈Z,W
|−〉l

 . (14)

From the equation above, it is immediate that the inner product is zero if
1 < C(Y ) + C(X) < N . Also, it is clear that 〈ψ|Σ̂A|ψ〉 can be different from
zero only if C(Z) 6= 0 is even and C(X) = C(Y ) = 0, which concludes the
proof. �
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Proposition 3 and 4 shows that the correlations for the N -particle system
are quite strange. We have a set of N particles that has always the same
observable associated to its totality, but when we look at any of its parts, then
the parts are completely uncorrelated (say, for the x-direction spins). In this
system the presence of a nonzero correlation appears only when we look at the
system as a whole, and not at its parts. In the next section we will analyze
in details the properties of the probability distribution associated to, say, the
operator Σ̂.

2 Probabilistic Properties

It is interesting to note the consequences of the previous result. Say we are
measuring the spin in the x direction for n < N particles. In this case all
the particles are independent, and also behave in a completely random way,
as the probability of measuring 1 is the same as the probability of measuring
−1. However, if we measure the spin of all N particles, the whole system is
deterministic in a sense that will be made clear later. First, let us start with
the following Proposition.

Proposition 2.1 Let

|ψ〉 =
1√
2

(|+ + · · ·+〉+ | − − · · · −〉), (15)

Σ̂ =
∏N

k=1 σ̂k,x, and to each particle i, 1 ≤ i ≤ N , we associate the random
variable Si, representing the value of its spin measurements, taking values ±1.
If t = n∆t, n = 0, 1, 2, . . . and we measure |ψ〉 using Σ̂ at each t. We define the

random variables X
{k}
t =

∏
{k} Sk, where {k} is any proper subset of {1, . . . , N}

and Xt =
∏N

k=1 Sk. Then each X
{k}
t , and Xt define Bernoulli processes.

Proof. First we should note that |ψ〉 is an eigenstate of Σ̂, such that we can
measure Σ̂ as many times as we want without affecting |ψ〉. Second, we should
note that none of the individual particles i are eigenstates of the spin operator
σ̂k,x, and a measurement of a single particle behaves in a way isomorphic to the
tossing of a coin. If we keep measuring spin in the x direction for all particles
in equal intervals of time ∆t, we can make a data table for the experimental
result that would look like Table 1, where we associate to each of the spin
measurements for particle i the random variable Si taking values ±1.

Each column of this table would be completely uncorrelated to the any
other column or combinations of columns with less than N columns involved.
Similar independence and randomness hold for any row of length at most N−1,
i.e., at least one entry is deleted. However, if we multiply S1, S2,· · · , SN , we
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S1 S2 · · · SN
∏N

i=1 Si

0 1 −1 · · · 1 1

∆t 1 −1 · · · −1 1

2∆t −1 1 · · · 1 1

3∆t −1 −1 · · · −1 1
...

...
...

...
...

...

Table 1: Possible set of experimental data results for the random variables S1,
S2,· · · , SN , and

∏N
i=1 Si.

always obtain the same value
∏N

i=1 Si = 1. Furthermore, since the wave func-
tion |ψ〉 is unchanged, the equal probabilities of obtaining a 1 or −1 for each
of the columns or shortened rows are also unchanged. As a consequence, the

temporal sequence of product random variables X
{k}
t =

∏
{k} Sk, where {k} is

any proper subset of {1, . . . , N}, form a Bernoulli process, i.e. at each time

t the random variables X
{k}
t are independently and identically distributed, as

we wanted to show. It is straightforward to extend the same argument to Xt. �

We are now in a position to make explicit the statement that the system
as a whole is deterministic and its subsystems are random.

Proposition 2.2 The random variables X
{k}
t =

∏
{k} Sk, where {k} is any

proper subset of {1, . . . , N}, defined in a way similar to Proposition 5, have
maximal entropy for such process, whereas the random variable Xt =

∏N
k=1 Sk

has zero entropy.

Proof. Since both X
{k}
t and Xt define a Bernoulli process, their entropy is

H = −
∑
pi log pi, where pi is the probability of each possible outcome, in this

case ±1. Xt =
∏N

i=1 Si, representing the system as a whole, has entropy zero,
since for all t P (Xt = 1) = 1 and P (Xt = −1) = 0. Yet, any proper subset {k}
of {1, . . . , N} will define a random variable X

{k}
t =

∏
{k} Sk whose entropy is

maximal for such a process, as P (X{k} = 1) = 1/2 and P (X{k} = −1) = 1/2,
i.e. the entropy H = −

∑
pi log pi = 1, where log is to base 2, as we wanted to

prove. �

The results just obtained show that the system in question is strongly
holistic, in the sense that a measurement of Σ̂ containing all particles in the
system yields a deterministic result, whereas any spin measurement made on
a subsystem has a perfectly random outcome. However, since we can measure
all the N spin values simultaneously, we can also write a data table for the
experimental outcomes, and a joint probability distribution exists. In this
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sense, the system is holistic but is non-contextual, as we can factor the joint
probability distribution.

Even though a joint probability distribution exists, we stress that such a
strange distribution, where only when we consider all particles is the system
deterministic, is rarely if ever found in any classical empirical domain. In fact,
quantum mechanics provides, as far as we know, the only example in nature
of a case where we have perfect correlation for a triple and zero correlation
for pairs (or, for the N -particle case, perfect correlation for the N -th moment
and zero for any N ′-th moment, where N ′ < N). This is the case if we
take a three-particle GHZ system, as it yields Xi ±1 random variables, with
E(X1X2X3) = 1, E(Xi) = 0, i = 1, . . . , 3. It is also interesting to stress that,
in the three-particle GHZ case, the pair correlations are zero as a consequence
of the triple correlation and the individual expectations. This can be verified
by direct computation. Say we have E(X1X2X3) = 1. Then, all terms with 0
or 2 negative components sum to 1, i.e.,

x1x2x3 + x̄1x̄2x3 + x̄1x2x̄3 + x1x̄2x̄3 = 1, (16)

where we use the notation x1 to represent P (X1 = 1), x̄1 to represent P (X1 =
−1), x̄1x2 to represent P (X1 = −1,X2 = 1), and so on. We also have that

x1x2 = x1x2x3 = x1x3 = x2x3 = a, (17)

x̄1x̄2 = x̄1x̄2x3 = x̄1x3 = x̄2x3 = b, (18)

x̄1x2 = x̄1x2x̄3 = x̄1x̄3 = x2x̄3 = c, (19)

x1x̄2 = x1x̄2x̄3 = x1x̄3 = x̄2x̄3 = d, (20)

with a+ b+ c+d = 1. Next, from (17)–(20), x1 = a+d, x̄1 = b+ c, x2 = a+ c,
x̄2 = b+d, x3 = a+b, x̄3 = c+d, and from E(Xi) = 0, x1 = x2 = x̄1 = x̄2 = 1

2 .
From (17)–(20) and the following equations, we obtain at once a = b = c = d
and

E(X1X2) = E(X2X3) = E(X1X3) = 0. (21)

However, contrary to the three-particle case, if we increase the number of
particles to four, the correlations are not dictated by E(X1X2X3X4) = 1,
E(Xi) = 0, i = 1, . . . , 4 anymore. For the four-particle case, we can compute,
in a manner similar to the three-particle one, that E(XiXjXk) = 0, i < j < k.
However, the correlations E(XiXj) can individually, but not independently,
take any value in the closed interval [−1, 1]. On the other hand, if all the
correlations are zero, then the positive atomic events have a uniform distribu-
tion, by an argument similar to the one given above. In fact, we can show the
following.
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Proposition 2.3 Given E(X1 · · ·Xn) = 0 and the product of any nonempty
subset of the random variables X1 · · ·Xn also has expectation zero, including
E(Xi) = 0, 1 ≤ i ≤ n. Then the 2n atoms of the probability space supporting
X1 · · ·Xn has a uniform probability distribution, i.e., each atom has probability
1/2n.

Proof. We show this by induction. For n = 1, we have by hypothesis
that E(Xi) = 0, so, as required, P (Xi = 1) = x1 = 1/2. Next, our inductive
hypothesis is that for every subsystem having m < n, the 2m atoms have a
uniform distribution, and we need to show this holds for n. Using the induction
hypothesis for n− 1, we have at once the following pair of equations:

x1x2 · · ·xn−1 = x1x2 · · ·xn−1xn + x1x2 · · ·xn−1x̄n = 21−n,

x1x2 · · ·xn−2xn = x1x2 · · ·xn−1xn + x1x2 · · · x̄n−1xn = 21−n.

Subtracting one equation from the other we have

x1x2 · · · x̄n−1xn = x1x2 · · ·xn−1x̄n.

By similar arguments, we show that all atoms that have exactly one negative
value of x̄i for the n-particle case are equal in probability. Moreover, without
any new complication this argument extends to equal probability for any atomic
event having exactly k negative values, 2 ≤ k ≤ n.

Next, we can easily show that those atoms differing by 2, and therefore
by an even number of, negative values have equal probability. We give the
argument for k = 0 and k = 2:

x1x2 · · ·xn−1 = x1x2 · · ·xn−1xn + x1x2 · · ·xn−1x̄n = 21−n,

x̄1x2 · · ·xn−2xn = x̄1x2 · · ·xn−1xn + x̄1x2 · · · x̄n−1xn = 21−n.

Using the previous result and subtracting we get

x1x2 · · ·xn−1xn = x̄1x2 · · ·xn−1x̄n.

Finally, we use the hypothesis that E(X1 · · ·Xn) = 0. This zero expectation
requires that the sum of all the terms with 0 or an even number of negative
values have the same sum as all the terms with an odd number of negative
values. This implies at once that all atoms have equal probability, and so each
has probability 1/2n, proving Proposition 7. �

We also prove a more restricted result, but a significant one, by purely
probabilistic means, i.e., no quantum mechanical concepts or assumptions are
needed in the proof.
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Proposition 2.4 Given E(X1 . . .XN ) = ±1 and E(Xi) = 0, i = 1, . . . , N ,
then any (N − 1)-th moment is zero, e.g.:
E(X1 . . .XN−1) = 0, E(X1 . . .XN−2XN ) = 0, etc.

Proof. We give the proof for E(X1 . . .XN ) = 1. Then there are 2N atoms
in the probability space. Given the expectation equal to 1, half of the atomic
events must have probability 0, namely all those representing negative spin
products. Now, we consider all the terms expressing E(X1 . . .XN−1). On the
positive side, we have all those with even or zero negative values:

x1x2 · · ·xN−1 + x̄1x̄2 · · ·xN−1 + · · ·+ x̄1x̄2 · · · x̄N−1 (22)

if N − 1 is even and as the last term if N − 1 is odd x1x̄2 · · · x̄N−1. To be
extended to atoms, a positive xN must be added. So, in probability

x1x2 · · ·xN−1 = x1x2 · · ·xN−1xN ,

because, given E(X1 . . .XN ) = 1

x1x2 · · ·xN−1x̄N = 0,

and similar for the other terms in (22).
The same thing applies in similar fashion to the negative side, e.g.,

x̄1x2 · · ·xN−1 = x̄1x2 · · ·xN−1x̄N ,

since the atom on the right must have zero or an even number of negative
values.

But we observe that, by hypothesis, E(X1 . . .XN−2XN ) = 0, but the prob-
ability xN is just equal to the sum of the probabilities of the positive terms of
E(X1 . . .XN−2XN ) and x̄N is just equal to the sum of the probabilities of the
negative terms above. Since, xN − x̄N = 0, we conclude E(X1 . . .XN−1) = 0.
The same argument can be extended to the other N − 1 combinations of Xi,
and this completes the proof. �

3 Π-Holism

The remarkable property that a quantum system has a perfect correlation
for its whole but a totally random behavior for any of its part seems to us
to represent a holistic characteristic of quantum mechanics. This holism is,
however, quite distinct from separability or contextuality. For that reason, we
propose the following definition for strict holism.
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Definition 3.1 Let (Ω,F , p) be a finite probability space and let

F = {Xi, 1 ≤ i ≤ N}

be a family of ±1 random variables defined on Ω. Let Π be a property defined
for finite families of random variables. Then F is strictly Π-holistic iff
(i) F has Π;
(ii) No subfamily of F has Π.
Moreover, if Π is a numerical property,
(iii) No subfamily of F approximates Π.

To understand this definition, let us give some examples from classical mechan-
ics. It is well know in classical gravitation theory that a two-particle system
has a well defined solution. However, if we add to this system an extra particle,
no closed solutions to this system exist in some cases, and in fact its behavior
can be completely random [2]. One may be tempted to think that this chaotic
behavior is a holistic property, but according to the definition above, it is not.
For instance, let us take the restricted three-body problem analyzed by Alek-
seev, where two particles with large mass orbit around their Center of Mass
(CM), while a third small particle oscillates in a line passing through the CM
and perpendicular to the plane of orbit of the two large masses. The whole
system behaves randomly, as well at least one subsystem, the one defined by
the small particle. Hence, this system is not Π-holistic, if we choose Π to be
the property of being random.

As yet another example, let us consider a glass of water. The water is a
large system that does not behave like a water molecule, but in a coordinated
way dictated by hydrodynamics. Is then this system holistic? If we take, say,
half the glass of water, the properties of this half of water are the same as the
whole glass, except its mass, hence the system is not Π-holistic for the other
macroscopic properties of the water. What about properties like, say, mass?
Say we take the full glass and remove only a water molecule from it. The new
subsystem approximates the mass of the original one, violating hypothesis (iii)
from the Definition, and so if we choose Π to be the property mass, the system
is not Π-holistic.

Proposition 3.2 Let F = {Si, i = 1, . . . , N} be the set of random variables of
all the spin measurements of the state

|ψ〉 =
1√
2

(|+ + · · ·+〉+ | − − · · · −〉),

and let Xt be the product random variable of Proposition 6, and let X
{k}
t be

the product random variable of any subfamily {k} as defined earlier. Let the
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entropy be the Π property of these product random variables. Then F is Π-
holistic.

Proof. Immediate, from Proposition 6, since the entropy of Xt is 0 and, for

any {k}, the entropy of X
{k}
t is 1. �

To summarize, we found that an N -particle GHZ state has a strong holis-
tic property. However, it may be difficult to detect experimentally a quantum
mechanical holistic characteristic with a large number of particles, as decoher-
ence may play an important role, given that the decoherence time decreases
rapidly if we increase the number of particles [11, 32, 42]. A promising setup
where this holism could be verified for a reasonably large number of particles
is the one proposed by Cirac and Zoller [12, 22]. We found that for N ≥ 4,
the measurements of E(X1X2X3 · · ·XN ) and of E(Xi) do not fix a probability
distribution, and extra measurements are necessary for the pairs, triples, and
so on, for the probability distribution to be fixed. We believe that these mea-
surements, which should yield many zero correlations, could be used to put
additional constraints on some local-hidden variable models that exploit the
detection loophole [18, 33, 38, 24].

We could also remark that this type of holism is not a characteristic only of
separable N -particle systems. It is possible have a localized quantum system
whose Hilbert space has a large enough dimension to allow for observables that
have the same properties as the X1, . . . ,XN of the N -particle GHZ. Though
such systems do not have the same difficulties as multi-particle systems, in-
sofar as decoherence increases with the number of particles, the complexity
of the different experimental outcomes may make it hard, as is the case with
experimental verifications of the Kochen-Specker theorem [26].

4 Quine’s Holism About Language

An important and prominent advocate of holism about language is Quine’s
view on the dogma of reductionism in his well-known article “Two Dogmas
of Empiricism”. Here is a succinct statement that states his thesis about the
holism of language without, in fact, using the term itself.

The dogma of reductionism survives in the supposition that each
statement, taken in isolation from its fellows, can admit of confirma-
tion or infirmation at all. My countersuggestion, issuing essentially
from Carnap’s doctrine of the physical world in the Aufbau, is that
our statements about the external world face the tribunal of sense
experience not individually but only as a corporate body. Quine,
1953, p. 41
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In a footnote to this passage, Quine refers to similar arguments of Duhem,
published much earlier, about physics, rather than language. (This reference
to Duhem was added in the revised edition of the paper, published in [36].)

It does not take much reflection to see that the very specific kind of radi-
cal or strict holism we are characterizing in this article has a definitely more
restricted form than what Quine is proposing about language. For example,
one would scarcely say that dropping some single sentence from the corpus
of language would radically change the nature of that language. Saying that
doesn’t argue against the holism of language in the sense Quine is arguing, but,
rather, argues against the strict holism defined above. Language is like water,
in the sense that removing a single water molecule from a glass of water does
not change any of the standard microscopic properties of the water, but it is
exactly such a radical change that is characteristic of the quantum holism we
have characterized in this article.

Someone might say, well, if we had a very tight formal system of language,
a removal of one sentence could upset various closure conditions and inferential
relations. But this is not the true nature of language. This is language at its ar-
tificial best. Now, we might say the same thing about the quantum-mechanical
system we propose. It is capable of explicit physical realization, but it is highly
special. Perhaps, therefore, a better way to put the matter is this. We con-
ceive of some rich, artificial language and now remove one sentence. What is
the effect of this? This is not something ordinarily studied in the structures
of formal languages, because we don’t have, for such structures, the kind of
computations we’ve exhibited for entangled particles in quantum mechanics.
One possible response, finitistic in character, is that, in any actual use of a
formal language, for example, in developing in a semi-formal way, axiomatic
set theory, we actually use only a rather restricted finite set of formulas or
sentences. We could remove any one sentence and, undoubtedly, find a close
enough form to it not to have missed that particular sentence. This is a rather
artificial-sounding way of getting around the problem, but, perhaps, enough
has been said to make reasonably clear that holism, as Quine thinks about it
for language, is a much less well-defined concept, or a much broader concept, if
we do not want to quarrel about definition, than the strict holism for quantum
mechanics we have considered here.

What we have said about language applies also to the web of beliefs, a
closely-related thesis, often advocated by Quine and others. Rather than webs
of belief, we would prefer to refer to associative networks, but this is not
important. We would accept that there is a kind of weak holism about the web
of belief, but it is not anything like the strict holism that holds for entangled
quantum particles.

There are many other distinctions and applications of holism that are inap-
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propriate to try to review here. An extensive survey, at least in the philosophy
of mind and in the philosophy of physics, is to be found in [20].

5 Conclusions

A set of observables is often considered as manifesting quantum effects if a
joint probability distribution modeling its outcomes does not exist [40, 21].
However, in addition to such quantum effects, quantum theory has plenty of
characteristics that, albeit reproducible by classical theory, are odd or puzzling.
Here what we mean as a “classical theory” are local realistic hidden-variable
theories, the type shown to be incompatible with some of the predictions of
quantum theory [8].

A well-known example is the double-slit experiment. In his Lectures on
Physics, Feynman said the double slit is “a phenomenon which is impossible,
absolutely impossible to explain in any classical way, and which has in it the
heart of quantum mechanics.” However, way before Feynman’s book was pub-
lished, de Broglie, and later on, David Bohm, provided precisely such a model:
the pilot wave interpretation. Though Bohm’s model is non-local for two or
more particles, it is still local and realistic for a single particle going through
two slits. But Feynman’s point is still valid, as the double-slit requires addi-
tional assumptions and a distinct ontology from the classical particle, at least
in Bohm’s model.

In this paper, we presented an example of a quantum system of observables
that exhibit a classical but strange behavior. Namely, we showed that for a
particular system of N entangled spin-1/2 particles, the values of spin present a
strong type of holism. In our example, the product of N spins is deterministic.
However, the product of any of its parts, N − 1, N − 2, N − 3, and so on,
is random. In other words, the whole behaves deterministically, whereas any
of its parts behave randomly. As far as we know, no classical system exhibits
such type of holism, excepted for contrived examples constructed as curiosities
in probability textbooks.
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Appendix

As much of the mathematics used here is not widely known outside of physics,
we briefly revise the main mathematical apparatus behind our quantum me-
chanical computations. We do so by showing in some detail examples of spin-
1/2 systems. This Appendix is far from complete, and the interested reader
should refer to one of the standard quantum mechanics textbooks (e.g., Cohen-
Tannoudji et al. [14] or Sakurai [37]).

A quantum mechanical system is described by a state vector |ψ〉 ∈ H, where
H is a Hilbert space, and any physical observable quantity is associated with
a linear Hermitian operator on H. A Hilbert space is a vector-space that is
complete (i.e., all Cauchy sequences of vectors converge to a vector in H) and
has an inner product.

An observable is represented by a linear Hermitian operator acting on vec-
tors in H. Experiments that measure an observable Ô (operators in H are
denoted here by capital letters with a hat over them) will have as allowed out-
comes only the eigenvalues of the Ô. Given that Ô is Hermitian, its eigenvalues
are orthogonal and we can decompose a state |ψ〉 into the orthonormal basis
of Ô, i.e.,

|ψ〉 =
N∑
i=1

ci|i〉,

with Ô|i〉 = oi|i〉, and oi the set of eigenvalues of Ô (for the present discussion,
the issue of completeness of operators will be ignored, as well as degeneracy,
as they will be of no importance). The probability of observing the value oi
if a measurement of the observable Ô is performed is given by Born’s rule as
P (oi) = |ci|2. Therefore, if follows at once that if |ψ〉 is an eigenvector of Ô
with eigenvalue oj , a measurement of Ô will have as outcome the value oj with
certainty.

Before we proceed any further, let us see the example of a single particle
system where the particle has spin-1/2. If we are only interested in the spin
observables, the Hilbert space for this particle has two dimensions. Experi-
mentally, we observe that if we measure spin in the z-direction, we observe
only two possible values: 1 or −1 (using a system of units where ~ = 2).
Mathematically, we would represent this experiment in the following way.

Let H1/2 be a two-dimensional complex Hilbert space, |ψ〉 be a vector

in this space, i.e., |ψ〉 ∈ H1/2, Ŝz, Ŝx, and Ŝy be linear operators in H1/2

representing measurements of spin in the z-, x-, and y-directions, respectively.
If we represent the eigenvectors of Ŝz as Ŝz|+〉 = |+〉 and Ŝz|−〉 = −|−〉,
then it follows from the spin-operator algebra that Ŝx|+〉 = |−〉, Ŝx|−〉 = |+〉,
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Ŝy|+〉 = −i|−〉 and Ŝy|−〉 = i|+〉. From the actions of the spin operators
above, it is easy to see that an eigenstate of Ŝz is not an eigenstate of Ŝx and
vice-versa. For instance, the state |+〉x = 1√

2
(|+〉+ |−〉) is an eigenstate of Ŝx

with eigenvalue 1, since

Ŝx|+〉x = Ŝx
1√
2

(|+〉+ |−〉)

=
1√
2

(
Ŝx|+〉+ Ŝx|−〉

)
=

1√
2

(
1

2
|−〉+

1

2
|+〉
)

=
1

2

[
1√
2

(|+〉+ |−〉)
]
.

However, Ŝz|+〉x 6= c|+〉x, where c is any complex number, and in fact we see
that |+〉x has an orthornormal decomposition in the basis of Ŝz that yields

components whose squares are equal to
(

1√
2

)2
= 1

2 . Therefore, according

to Born’s rule stated above, the probabilities of measuring 1 or −1 in the
z-direction for state |+〉x are both 1/2.

Multiple-particle systems can be represented in quantum mechanics in es-
sentially the same way as single particle systems, with the difference that the
Hilbert space will have a higher dimensionality. For example, imagine that we
want to represent two particles with spin-1/2. Each particle is described by its
own Hilbert space, say H1/2,1 and H1/2,2, with the properties and observables
satisfying the same rules as the single-particle system.

To describe a system composed of these two particles, we use a new Hilbert
space H that is the tensor-product of the two Hilbert spaces, H = H1/2,1 ⊗
H1/2,2. In the same way, we can represent experiments on both particles as
observables that are the tensor product of observables on individual particles.
For example, the observable in H that represents a measurement of spin in the
z-direction for particle 1 and a measurement in the x-direction for particle 2 is
the observable Ŝz,1 ⊗ Ŝx,2, where Ŝz,1 is the z-direction spin observable acting
on H1/2,1 and Ŝx,2 is the x-direction spin observable acting on H1/2,2.

A state is represented as a vector in H, and we can always write any state
in terms of the base of tensor products of the subspaces H1/2,1 and H1/2,2. So,
if {|+〉1, |−〉1} and {|+〉2, |−〉2} form a basis for H1/2,1 and H1/2,2, then

{|+〉1 ⊗ |+〉2, |−〉1 ⊗ |−〉2, |+〉1 ⊗ |−〉2, |−〉1 ⊗ |+〉2}

forms a basis for H. Notice that, for example, state |+〉1 ⊗ |−〉2 has a simple
meaning: it is the state where if we measure spin in the z direction for both
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particles 1 and 2 we obtain +1 and −1, respectively. To confirm this interpre-
tation we can apply the z-spin observable to both particles, i.e., Ŝz,1 ⊗ Ŝz,2,
and verity that |+〉1 ⊗ |−〉2 is indeed an eigenvector of this operator. The
generalization to N particles is straightforward from the two particles.
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[41] M. Żukowski and D. Kaszlikowski. Greenberger-Horne-Zeilinger paradoxes
with symmetric multiport beam splitters. Physical Review A, 59(5):3200–
3203, May 1999.

[42] W. H Zurek. Decoherence and the Transition from Quantum to Classical.
Physics Today, 51:36–44, 1991.
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